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ABSTRACT

A cavity perturbation technique has been developed to measure
the complex dielectric constant of vegetation at microwave frequencies,
Several types of vegetation (grass, corn, spruce and taxus) were
measured and the results showed that the dielectric constant of each
is roughly proportional to the moisture content. For freshly cut
samples, of about 65% moisture content, the dielectric constant was
approximately 25-j7. As the samples were allowed to dry out the die-
lectric constant diminished to about 1. 5 for ¢! and . 001 for €',
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DIELECTRIC CONSTANT OF VEGETATION
at 8.5 GHz

I. INTRODUCTION

In the past, much work has been done on dielectric and magnetic
properties of chemical compounds and solutions.! However, compara-
tively little is known about the dielectric properties for substances
found freely on earth. These include all types of vegetation and the

many different kinds of rocks and soils.

The primary interest of this paper is with the measurement, at
microwave frequencies, of the complex dielectric constant of vegeta-
tion, particularly the leaves, or in the case of coniferous plants, the
needles. Because these materials are quite irregular in shape, and
because their dielectric constant may be expected to depend on their
water content, a cavity perturbation method was used. This permits
accurate measurement of the properties of materials with the very
large dielectric constant and loss tangent characteristic of water,
and has the advantage of allowing samples of different shapes to be
measured with the same equipment.

II. MICROWAVE CAVITY PRINCIPLES

The specimens of vegetation were measured in a microwave
resonant cavity made from a section of X-band (8.2 to 12.4 GHz.)
waveguide. One end of the waveguide was closed by a shorting wall
and the other end was connected to a microwave network by a wall
containing a small circular opening or iris, Fig 1.

The effect of the iris is usually ignored in the elementary
theory of cavity operation, in which it is customary to assume that
the cavity is lossless, and has no wall openings. Practically, this
is unrealistic, since losses are present, and since there must be
some coupling between the cavity and the microwave network in
order to measure the effect of introducing the sample. Using an
iris to separate the cavity from the waveguide has the effect of
replacing the short circuit of the ideal cavity with a large lumped
susceptance. This susceptance will alter the conditions under which
the cavity resonates and, accordingly, it will affect the rest of the
microwave circuit.
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Fig. 1. The cavity with one end wall
containing an iris.

The Idealized Cavity

In the absence of the iris and losses, the resonant frequency freg
is determined by the separation equation,

0 e (36
@ il 6

where: a, bandc are the cavity dimensions; p and ¢ are the
permeability and permittivity of the medium filling the cavity.

This equation relates the resonant frequency of the cavity to its
dimensions and to the permittivity and permeability of the material
filling it. If the cavity dimensions are such that the dominant mode is
the TEjg}, the resonant frequency becomes,

1 1 1
3 f o — = =
(3) res Zkfﬁe a2 +cz

The fields for the TE;j; mode are:?
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If losses are now considered, but still no iris is added, a quality
factor or Q may be defined as follows:

[N

(6) Hy,

. '/'/LL =
SR

(7) Q = WX energy stored = oW
average power dissipated B
d

The numerator and denominator of Eq. (7) may be determined
from the usual expressions for stored energy 3

® W= ((Taululzav
(9) W ="g‘S‘S‘%e‘E!2dv

V cavity

Substituting Eq.(4) gives, for the electrical energy,

abc

W= 2 i 2TWX gip 2WZ
(10) We=5 ggg E,* sin &5 sin 22 dv

000
where: Wy, = time average magnetic energy stored in cavity.

time average electric energy stored in cavity,
P4 =time average power dissipated within cavity.
Evaluating the integral yields the following result,
1) W, =W, ==|g,|%abc
(] m 8 o

The total amount of energy stored in the cavity at any time is just

Z\TVm or zWe.



If it is assumed that all losses occur in the walls;*

(12)  Pg=Rpy @IHP dA

where R
metal.’

m = ReZ, ., the real part of the surface impedance of the

14 .
(13) Zm =755 = Rm * I ¥m

where §g = {é— - and o = the wall conductivity; the quantity §g is the
skin depth of hé Mmetal. Substituting these relations into Eq. (7) yields
the result for the TEjq) mode.6

LB Y @z_,_cz)s/z

2 Rm[ac (52+c2) +2b ({3_,( ca)]

(14) Q=

Cavity Coupling

The effect of the iris -- that of placing a lumped susceptance in
the waveguide -- may best be understood from the microwave circuit
point of view. In the analysis which follows the iris is examined both
as a lumped susceptance across a transmission line (waveguide) and
as part of alossless junction between two waveguides. By combining
the two points of view, design criteria for the cavity are obtained.
These criteria dictate both the resonant frequency and the effect of
the cavity on the rest of the microwave network.

When the iris is looked upon as a lumped susceptance, Fig. 2,
its position must be taken as coincident with the plane of symmetry
of the actual iris in the waveguide. The impedance matrix for such an
element has the following form.

3 . 11
(15) [z]: i L

The scattering matrix for this element may be determined from
its impedance matrix by use of the relation,?

ae) [s]= [ 2 [z + 1
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Note: jb is coincident with the plane of symmetry
of the iris. The variables shown on the
diagram are normalized as follows:

i=WZo; v=V/NZ5. jb=jB/Zo

where V and I are the actual transmission
line current and voltage and Zg is the
characteristic impedance.

Fig. 2. Diagram of a transmission line or waveguide
with a lumped susceptance.

Substituting Eq. (15) and performing the required manipulation yields
the desired [S] matrix,
. b 2

1

for an iris of susceptance b in a piece of waveguide, assuming that
the reference planes are coincident with the plane of the iris.
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The iris may also be viewed as a lossless junction, Fig. 3.
The scattering matrix for any lossless junction has the general
form:

Sn Sz
(18) [s]: |
S;1 S22 jk -N1-k?

1-k2  jk

Physically the real quantity k is the coupling coefficient
_between the two transmission lines joined at the iris. In terms of
the incident wave, a,, and the transmitted wave, b, ,k = bz/al (see
Fig 3).

reference planes

o e

i
|
I

waveguide | | iris  waveguide

a, - - »bz

b, = I }" a,

Fig. 3. A lossless junction formed by an
iris in a waveguide; the cor-
responding reference planes
are shown at(1,and 2}
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Fig. 4. The relation between the shift of reference

planes for the lumped susceptance and the
position of the reference planes of the iris,



Having determined the scattering matrices for a lumped
susceptance on a transmission line and for a lossless junction in
terms of its coupling coefficient, it is possible to relate the coupling
coefficient to the susceptance. The problem at hand is to transform
the scattering matrix for the lumped susceptance into the same form
as that of the lossless junction and then compare the terms of the two
matrices. This transformation is made by a change of reference
plane position.

It may be seen® that the effect of shiftingthe reference planes
of a junction outward is to create a new matrix, [S'{ whose terms are
related to those of the old matrix, [Sl as follows:

(19) Sl"xm = Snmej @’n + ¢m)

where ¢, and dmare the electrical distances references planes nand m
are shifted away from the junction. As an example, if reference planes
1 and 2 were shifted a distance ¢, and ¢, respectively, the new terms of
the scattering matrix become:

S, , e (1 +¢)
S12 = S12 eJ (¢‘ * ¢")
S'Zl leej @)Z+¢l)

Szzej @’z +¢’z)

If a reference plane is shifted toward the junction, it is considered

to have been moved in the negative direction, while as in the example
above, a move away from the junction is taken as positive. In the
case of the lumped susceptance, Fig. 4, each reference plane is to be
moved outward by the same distance, ¢ , so that the new scattering
matrix is

!
Sll

1
Sa2

1 i2¢ | -b  2j
(20) [s:'= %‘;_ )
2j  -b

This is the form taken by the S matrix of Eq. (17 when the reference
planes have been moved a distance ¢ away from the junction.




By comparing S';; and S',, of Eq. (20) with S;; and S,, of
Eq. (18) it may be seen that the terms of the two matrices will be
of the same form, provided -bej2d is real; that is,
2j+b

(21) ¢ =—; tan ~! (%)

The above transformation has been made for a capacitive iris,
+jb . For an inductive iris, -jb, the reference planes must be
moved in the negative direction, i. e. reference plane 1 must be
moved across the junction to the side of port 2 and reference plane
2 must be moved to the side of port 1.

Once the matrix has been transformed, k may be determined
by equating S',,, S',, in Eq. (20) with S,;;, S,, in Eq. (18):

+ 2
4+b

(22) k =

the positive or negative sign being chosen as the iris is inductive
or capacitive respectively.

If this junction (the iris) were now to be used as one end of a
cavity, Fig.5 , the position of reference plane 2 becomes one of
a voltage minimum, Fig. 6, i. e. it would represent the wall position
in the ideal cavity. Since ¢ is known, the resonant frequency can
thus be determined from the cavity dimensions and the susceptance of
the iris. Since reference plane 2 takes the place of the missing solid
wall, § (the electrical distance from the reference plane to the end wall)
must be equal tonkg/2 (g is the guide wavelength); for the TEj(
mode this becomes just A g/2. The total cavity length at resonance in
terms of the guide wavelength is:

(23) t=2g + MNgo
2 2w

Substituting for ¢

(24) 1=2g + }g tan G)

(25) 1 =-l—‘l1r+- ’
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From the separation equation of the lossless waveguide,

2
(26) "‘(ﬁ) =(_a11)2 _(Z'n' fres)zp-‘ R

so that
1 1 2
(27) fres=27ﬁ?\l(27+<)%g) :
‘ 1

Substituting the relation for Xg

1 1)z+ 1 -1 2\
(28) freS:Z’\l}.L—e- rY =y <1r_+_tan g

+ for a capacitive iris

- for an inductive iris

With this equation the cavity may be designed to resonate at any given
frequency by varying £, its length, and b, the iris susceptance.

Up until now the subject of losses and their effect on the choice
of coupling coefficient has been avoided. Losses occur in the side
and end walls of the cavity and in the iris itself, These losses may
all be lumped together in a roundtrip attenuation constant such that
a wave entering the cavity, traveling to the backwall and returning
would be attenuated by the amount e~ 2T ; thus, (see Fig. 5).

(29) a, =-b, e {”T * Zi‘*‘)

Since the scattering parameters at the iris are related by the equation

(30) | b, -N1-k?  jk a,

b, ik -Nl-k az|

one may substitute for a, to obtain:

11



b ik
22 J .
(31) a; T 1-MT-K2 e-.(aT+JZ¢T

b, NTIET e -( apti2Y)
by _ .
a, 1-N-kZ e~ (8T *J%V)

(32)

The first of these equations represents a transmission coefficient
for the iris backed by a lossy cavity and the second gives the reflec-
tion coefficient. Differentiating bz/a1 , with respect to k and then
setting the result equal to zero allows the transmission coefficient,
b, /a,, to be maximized.

bz /a2 IR - (o +52y)
B3 a (LT e P e 7 O

from this,

(34) TR = (07 +i29)

and since, at resonance, y = v (for TE|g]), there results the follow-
ing relation between the attenuation and the coupling coefficient,

(35) M-kZ = e"OT
or

(36) k= +nI-e-20p

For this value of coupling, called the critical value, maximum power
is transferred through the iris at resonance. At this critical value,

(37) 22

t1)
al -;;l—e-zaT
and
(38) 2 - o
ay

i. e. there is no reflected power, and the cavity is matched to the
guide.

12




-2
For values of X # 1-e” “%T b; no longer equals zero at

resonance. If|k‘< 1-e-20T, b,, is negative and undercoupling results.

In this case b, is affected more by reflection from the iris than back-
ward flow from the cavity. When J>,] 1-e~20T, the over-coupled case, the
opposite is true and b; is dominated by backward flow from the cavity.9

With this analysis the cavity design criteria are complete,.
Using Eqgs. (22, 28, and 36), a cavity with given losses may be designed
to resonate at any given frequency, and its effect on the rest of the
circuit may be determined.

The Quality Factor and the Microwave Circuit

With the addition of the iris to the cavity, defining a quality
factor becomes more complicated. The previous definition, Eq. (7),
was sufficient for the closed cavity since no interaction between the
cavity and waveguide was present. With the introduction of the iris,
three Q's must be defined. The first is the unloaded Q, Qu.

(39) Qu= Energy stored in the cavity
Energy dissipated in the cavity per radian

This is the same Q as was defined earlier and it is independent
of the effect of the coupling. The second is the external Q or Qgp,

(40) QF = Energy stored in the cavity
E Energy dissipated in the external circuit per radian

This definition must be qualified to mean the energy dissipated
in the external circuit after the source has been shut off. (If this were
not understood, and the cavity were critically coupled, b, would equal
zero and Qp would be infinite.) Last is the loaded Q or Qg,

(41) Q. = Energy stored in the cavity
L Energy dissipated in both the cavity and external
circuit per radian

Near its resonant frequency a microwave cavity may be thought
of as a series R-L~C circuit, and the three Q's may then be determined
from the element values by comparing the impedance expression for the
cavity with that for the R-1.-C circuit. The impedance in the cavity at
a point immediately inside the iris and looking back into the cavity,

Fig. 7, is given by the transmission line equation,

13



Zycos (a+i8) 2+ Zgsin (a+p) o
Zo cos (a+j(3)l+j Z sin @+j[3)1

(42) Z=12Z,

Zy is the terminating impedance of the line, inthis case zero.
(42) thus reduces to:

z tanhat + tanhjp £
© 1 + tanha ftanhjp £

(43)  Z = Z, tanh ‘a+jp) ! =

Z- el
!
- e = m——— ——‘ﬁ'i - - - R
i’l
li-
! ]
waveguide : ! cavity
S
1 o
- el ——
e Zo

Fig. 7. The iris coupled cavity.

If the cavity losses are small,
tanhat ® at
and
(44 Z® Zo @z +jtanp1)
Also, for the TE;g) mode, ( %_;"8. at resonance so that

tanfg % 0, aftanpft<<l1

14

Eq.



and,

(45) ZxZg (al + jtansz)

For small B £ this may be written in the form:!°

~ Y 2 T
Z'VZO O.l+JT§ ‘*Tes 6
~

(46)

§ =w - wres

This equation has the same form as the equation for the input impedance

of a series R-L-C circuit:

1
(47) Z=R+j (»L -—)

wC
(48) Z xR+j2L$§
where § =W - wres

2
and W res = —l

Matching the terms of Eqs. (46) and (48) gives,

(49) R = Z,at
2

Zo A T
(50) L =T°' X—f—

Wres

The lumped susceptance of the iris and the characteristic impedance
of the connected transmission line are in parallel with the R-1.-C
circuit. By combining the line impedance and the susceptance an
equivalent series circuit may be drawn, Fig. 3. The parallel
combination of_l_ and Z is,

jb
Zofpz  _ j Zo? /o

51
(1) Z5° + 1/p2

For a high Q circuit Zc,Z >>_1_Z so that the equivalent series combina-
tion becomes, b

1 .
(52) 7o6% ~ J%

15
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From this circuit the unloaded Q is,
(53)  Qu =fesl
(54) @, =T
204\ 2
The external Q,
(55) Qp ={(wresL - llb) Zob?
Zobm A2
(56) Qp = Zob (T—— -{%—- - 1)

The loaded Q,
“l/p + wres L
(57) QL = T/p? Zg ¥ R

T Ag?
-b Zo+b2Z,% 3 T%_

(58) Q1, =
1 +b%2Z,%at

III. PERTURBATION THEORY

If it were always possible to completely fill the cavity with a
material, finding the dielectric constant of the material would be a
relatively simple task.,. However, in many cases this is not practical,
either because of a lack of homogeneity or because there is not enough
sample material available. Under these circumstances, if the geometry
of the sample is known, a perturbation method can be used to determine
the dielectric constant. Here the electric field structure within the
cavity is perturbed by the insertion of the dielectric sample, and by
knowing the shape of the sample, its position in the cavity, and the
change it produces in the resonant frequency and half power bandwidth
of the cavity, the complex dielectric constant of the sample may be
determined. If the sample has a relative permeability of unity, its pos-
ition in the cavity is not important since the magnetic field will not be
disturbed. On the other hand, if the relative permeability is not unity,
care must be taken to put the sample where the magnetic field is zero or
almost zero. With the TE;j; mode, this corresponds to a line passing
through the center of the cavity parallel to the y axis, Fig. la. Itis
also possible to measure the permeability of a sample with this method
by placing the sample at a position of zero electric field.

17



To determine quantitatively the effect of perturbing the cavity,
consider first the situation of Fig. 9a. which represents the cavity
in the unperturbed case. Eg, Ho represent the unperturbed fields
and € and p represent the homogeneous medium enclosed by the
cavity. Fig. 9b. shows the perturbed case with the new fields E, H
and a new dielectric constant, €e+Ae¢. Having defined these fields, an
expression may be arrived at which relates the change in the resonant
frequency to the addition of a sample with a dielectric constant e+Aell.

(59) wowo S.S:((A‘ :E_'TEO*) dv
- SSS‘ € E'Eo* + pﬁ'—ﬁo*) dv

where w and wo are the perturbed and unperturbed resonant frequencies,
respectively. This equation is the exact relation for the change in re-
sonant frequency if H = O at the point where the cavity is perturbed

or if p is always unity., Since the field inside the perturbed cavity is
unknown, except for some very simple sample shapes, an approximation
is needed to provide a simple expression for the electric field inside

the perturbed cavity. The sample shape of interest here is a thin
rectangular cylinder positioned such that its long direction is parallel

to the electric field, Fig. 10. Applying the boundary conditions for a
field tangential to the flat surface of the sample shows that the electric
field immediately inside the sample must be the same as that outside.
Furthermore, as long as the thickness (t) of the sample is much less than
a skin depth, the field throughout the sample will be nearly equal to the
external field, that is to the unperturbed electric field. The perturbed
field in the rest of the cavity may also be approximated by the original field
since the volume of the sample is small compared to the volume of the
cavity. Substituting these approximations into Eq. (59) gives,

SWA:EOZ dv
SSS(I Eo|* + 1 |Ho| )dv

Now since, e|E°|Z = P‘Holz and, o€ =€o (Gr-l)

e T2

(61) 2-20 w o
= s

(60) w- wo A

18




Fig. 9a. The cavity as originally
unperturbed.

Fig. 9b. The cavity as perturbed
by a small dielectric
sample,

19
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Fig. 10. The sample shape and its
orientation with respect
to the E field.

The numerator is integrated only over the volume of the sample, &v,
since Ae¢=¢ -1 and is zero everywhere else in the cavity.

The sample is placed in the center of the cavity, Fig. 1l for
several reasons; the electric field is greatest at this point and
therefore a sample placed there would affect the cavity resonance
more than if it had been placed elsewhere; there is the least amount
of position error since the field remains almost constant over small
distances from the center; the magnetic field is zero.

20
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Fig. 11, The sample position in the cavity with t << a and w<< c.

Evaluating Eq. (61) with the sample in the center and using the TE;q
field expression yields:

b+l a+t c+w
S‘ g S sin? *% gin? TZ_ dydxdz
t a c
a-t c-w
(62) W Wo A €r—1
® S‘ g S sin? XX sin? wz  dydxdz
c

21



This reduces to the following:

(63) w-wo & Z(Er-l) ttw
w abc

If the perturbing sample is lossy, €r = €' -Je'', the resonant
frequency is complex, and may be expressed in the form '?
w
res

2Qu
Substituting these in Eq. (63):

w:wres +j

w+j:2—g—wo"jw° Ltw

(64) 2Qo X — 2(""1'.15” abc

s W
w1t 20
where Q = the unloaded Q of the perturbed cavity

Qg = the unloaded Q of the unperturbed cavity

In the depominator,—z_“—’-Q may be assumed negligible compared to w

and the equation may be broken into real and imaginary components,
For the real part,

(65) @ x - 2(et-1) dtw

@ abc

and since @ 3 wgy, the imaginary part becomes
1 1 4
~ H ——
(66) R - Do ~ € 5

Eqgs. (65) and (66) relate the change in resonant frequency and the
change in Q, to the complex dielectric constant of a sample perturb-

ing the cavity. Similar relationships could also be derived for a
sample perturbing the magnetic field in order to determine the complex
permeability. For samples of other shapes but which satisfy the condition
that the internal electric field is approximately equal to the unperturbed
electric field, one may still use equations 65 and 66, with the quantity
(Ltw) replaced by the volume of the sample. Suitable samples shapes
are thin sheets of material with the ''thickness' dimension perpendi-
cular to the unperturbed electric field. Appropriate approximate

fields for cylindrical and spherical samples are given in a previous
reference. !!
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IV. THE MICROWAVE EQUIPMENT

This section describes the microwave network used to make the
dielectric measurements and the principles behind its operation. The
microwave circuit is shown in Fig. 12, All of the components ex-
cept the cavity and iris are readily-available commercially-made items.

The operation of this network depends upon the properties of the
magic tee. For the moment assume that the iris has been replaced by
a shorting wall but that the rest of the equipment remains unchanged.
Power from the klystron which enters port 3 is split equally between
ports 1 and 2. The resultant waves travel down lines 1 and 2, and are
reflected by the shorting plate of line 1 and the sliding short of line 2.
Now, if the sliding short of line 2 is adjusted so that its distance from
the junction is equal to that of the shorting wall of line 2, both the re-
flected waves of lines 1 and 2 arrive back at the junction in phase. Power
from lines 1 and 2 is again split equally, this time between ports 3 and
4. No power is transmitted from portl to 2 or from 2 to 1. Because
of the fact that the signals from lines 1 and 2 enter line 4 with opposite
phase, the resultant signal in line 4 is zero. The power entering port 3
is absorbed by the isolator and attenuator, and is no longer of any con-
sequence.

The same situation also occurs with the arrangement of Fig. 12,
using the iris and cavity in line 1 instead of the shorting wall, as long
as the frequency is well off resonance where the iris acts almost as a
short circuit. As the frequency of the system approaches resonance,
power will begin to be dissipated in the cavity. Since the power now
absorbed within the cavity would otherwise have been reflected, the
difference between the two waves entering port 4 is no longer zero and
the power meter at the end of line 4 will indicate a change in power
level. The power meter connected to line 4 measures, in fact, a portion
of the power absorbed in the cavity, and by noting the frequencies for
which the power level is 3 db below that at resonance, the half power
bandwidth may be determined. (See Appendix A). The resonant con-
dition of course, is determined by the frequency at which maximum
power is absorbed.

In practice, determining the half power bandwidth by changing
the frequency leads to difficulties which can be avoided by always
operating at the same frequency, and changing the cavity dimension
to provide a resonance effect. This is accomplished by replacing the
end wall of the cavity with a calibrated sliding short, Fig. 13. The
resonant frequency of the cavity may now be increased or decreased by
moving this short in or out. A curve may be plotted to relate the short
position andthe resonant frequency; a typical example is given in Fig. 14.
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iris calibrated sliding short
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Fig. 13. The cavity with a calibrated sliding short replacing
the solid end wall,

It will be noticed that the curve is linear over the small frequency
range covered by Fig. 14, and frequency measurement can be made
with very little error. This method has two advantages over changing
the system frequency. Changing either the turning screw or reflector
voltage of a klystron, besides altering its frequency, also changes the
output power level. It is evident that this would make any attempt at
determining the half power bandwidth, and thus €' futile. Furthermore,
if the system frequency were varied and the path lengths of lines 1 and
2 were not equal, the sliding short of line 2 would have to be adjusted
along with the frequency in order to keep the two waves entering port
4 exactly 180° out of phase,

V. MEASUREMENT PROCEDURE

Once one is familiar with the equipment and its operation, the
measurement procedure is relatively simple. For the measurements
reported here the sample was held in place at the center of the cavity
by a styrofoam block. Thus the "unperturbed''cavity, (the condition
under which the frequency calibration curve of Fig. 14 was plotted)
contained the styrofoam. The '"perturbed' cavity contained both the
styrofoam and the sample. Once the cavity was in place (either
perturbed or unperturbed), the sliding short on the cavity was moved
to a position where the cavity would not be near resonance. Next the
sliding short on line 2, Fig. 12, was adjusted to produce a null on
the meter. Having done this, the sliding short on the cavity was moved
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through resonance, and the resonance and half power short positions
were noted and converted to equivalent frequencies. When the cavity was
perturbed the resonant frequency determined by the short position from
the calibration curve, wo, was different from the actual operating fre-
quency, w, In this case perturbing the cavity lowered the resonant
frequency, provided the dimensions were kept constant. Therefore,

the short had to be moved inwards to make the cavity resonate again

at the system frequency. Moving the cavity end wall inward resulted

in a resonant short position which corresponds to a '"frequency' higher
than the system frequency.

For some high dielectric samples which produce a large change
in frequency, wo may not be withinthe frequency calibration curve.
In these instances either the curve must be extended, or more con-
veniently, the system frequency,w, can be changed until wo and the
half power frequencies again lie within the limits of the curve. If this
is done, w must be measured with a wave meter to find the change in
frequency, w-wo,

The operation of the system was checked by measuring the fre-
quency shifts and bandwidth of a very thin glass tube filled with water,
retained within the cavity by a styrofoam block, and with the axis of
the tube parallel to the electric field. The roughly cylindrical sample
was considered to be an ellipsoid of revolution having the same major
and minor axis as the actual sample, and an internal field correction was
computed from standard tables.* Fairly good agreement was obtained
between the measured value of ¢ and the tabulated value for the same
temperature and frequency, with the measured values consistently 10%
to 15% low.

VI. CAVITY MEASUREMENT RESULTS

The motivation for the measurements taken here was to provide
a basis for a theory of radar return from vegetation (in all models of
which, the dielectric constant of plant material must be known) as well
as interest in the dielectric constant of vegetation for its own sake. In
order to provide a range of plant types to compare with available radar
measurements,! 3 four different kinds of plants were measured:

grass - small strips were cut from blades of common lawn grass.

corn - strips were cut from the broad leaves of the plant, just
before tasseling.

taxus cuspidatus (yew) - small portions of the needles were used
from this evergreen shrub.

blue spruce - small portions of the needles were used from
this evergreen tree.

* B. Lax and K. J. Button, Microwave Ferrites and Ferri magnetics,

New York 1964 p. 162. 27



With each of these samples the specimens were cut quite small, typically
.005"x. 1" x, 05" and were placed in the cavity with their vein structure
parallel to the electric field. The fact that the samples were so small
made accurate measurement of the dimensions difficult and this proved
to be the major source of error in the results. The skin depth for these
samples was calculated and was found to be 0.16 inches. In view of the
small sample size, the approximation that the electric field in the sample
is the same as that outside is correct.

The dielectric constant measurements were made using the cavity
perturbation technique discussed previously and the results of these
measurements are displayed in Figs. 15 - 17. After a sample piece was
freshly cut its physical dimensions were measured using an optical com-
parator. The electrical properties were thenmeasured in the cavity and
the weight was recorded immediately afterwards, using a Cahn Electro-
balance. The same sample piece was then continuously measured and
weighed until it had completely dried out. Each line on Figs. 15 - 17
indicates the progress of an individual sample piece as it was allowed to
dry out, Final drying to determine the dry weight was carried out in a
small oven,

The normal operating frequency of the system was 8.5 GHz, and the
insertion of a sample in the cavity changed the resonant frequency by as
much as 50 MHz. (which could be measured with a precision of approxi-
mately 1 MHz) for a freshly cut piece and as little as 1 MHz,. for a dried
out piece. Typically, Qyu, when the cavity was perturbed by a freshly
cut specimen, was about 200, As the sample dried, Qu usually increased
to a high of about 1200; taxus cuspidatus was an exception with a Q of
only 600 for a dried sample. The Q, for the unperturbed cavity was 1400.

As the samples dried out, their dielectric constants changed.
For this reason the dielectric constant was plotted as a function of the
moisture content., The measured dielectric constants and the respective
weights were then used to plot the curves of Figs. 15 - 18. Moisture
content was determined from the weight as follows:

(sample wgt. - dry wgt.) x 100

(67) % moisture content =
sample wgt,

All of the samples were found to dry out extremely rapidly - so
much so that some of the water was undoubtedly lost between measuring
and weighing. For this reason, the plotted values of water content are
probably systematically smaller than the actual values at the time of
measurement, Although the precision of measurement was not adequate
to reveal temperature effects, it may be noted that most of the data
was taken at temperatures between 75° F. and 95° F.
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The complex dielectric constant of grass leaf plotted as a
function of moisture content, The numbers on the two
curves,e' and €', represent the same sample and the curves
show the progress of the sample as it dried out. The dashed
curve is the equation 1.5 + (€', -je'y)Xf where €',-je'y; is the
dielectric constant of water and f is the fraction of water content.
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function of moisture content. Curves 2, 3, and 4
represent samples taken from leaves of the same plant.
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The complex dielectric constant of a needle of taxus
cuspidatus plotted as a function of moisture content.
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It is instructive to compare these measured values with the
known value for water at 8.5 GHz,, 62 - j29.14 If it were assumed
that the water was contained in tubes parallel to the electric field,
then ¢ for vegetation ought to be approximately that of an equivalent
amount of water., This is clearly too large, (see dotted curves on
Figs. 15 - 17). If, on the other hand, the tubes were perpendicular
to the electric field the resultant dielectric constant should be closer
to that of air. In this connection it would be of interest to observe the
effect on the measurements if the leaf were placed with its vein struc-
ture perpendicular to the electric field, since it is known!that samples
of wood, for example, exhibit different dielectric constants when the
grain is oriented parallel or perpendicular to the electric field.

While it is clear from the figures that the dielectric constant
of vegetation is not exactly proportional to that of some equivalent
fraction of water, the dependence on moisture content can be approxi-
mately accounted for by a formula of the type below:

(68) e'-je = 1.5 +<£L‘E - ji”_‘?f
2 3

for the samples of corn, grass and taxus,
where:
€'-je'" = the real and imaginary parts of the dielectric
constant of vegetation
¢'w-je"w = the real and imaginary parts of the dielectric
constant of water
f = the fractional amount of moisture present in the
vegetation,

It is hoped that this equation may prove useful in developing an under-
standing of the radar scattering from vegetation.

The dielectric constant of the blue spruce sample was somewhat
lower than predicted by Eq. (68). The most probable explanation is
that, as the sections of needle dried out, hollow cores developed within
the sections, Thus the actual volume of matter was smaller than the
external volume of the sample, ({tw), used in Eq. (65).
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VII. SUMMARY AND CONCLUSIONS

A cavity perturbation method has been developed whereby the
complex dielectric constant of vegetation can be measured. An
analysis of cavity design and operation has been presented from which
it is possible to build a cavity suitable for this purpose. Using this
perturbation technique, measurements were made of the complex
dielectric constants of several types of vegetation: grass blades, corn
leaves and the needles of two evergreens,

Each of the samples exhibited a dielectric constant that was
highly dependent on water content. The samples displayed a high
dielectric constant (about half that of water) when they were freshly
cut (about 65% moisture by weight) and then as the samples were
allowed to dry out the dielectric constant diminished until only the
dielectric constant of the fibrous plant structure could be measured.

This method is not limited to measuring vegetation. The per-

mittivity or permeability of any sample for which the geometry is
known may be measured by the same technique.
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APPENDIX A

This section shows in detail the relation between the power level
indicated by the power meter of line 4, Fig. 12, and the loaded Q of
the circuit. Consider the diagram of Fig. 19. Off resonance, the
incident wave of amplitude a, (a being complex) is reflected by the iris
with amplitude -a, Near resonance, a portion of the wave will be trans-
mitted through the iris and the reflected wave will be correspondingly
reduced. The amplitude of the reflected wave at resonance may be re-~
presented by -(a+ag), and at the half power point by -(a+a;) where ag
and a; are amounts by which the reflected waves are reduced at res-
onance and half power respectively. If -b represents the reflected
wave of line 2 the resultant waves in line 4 are:

(;1]2> [-(a+ao) +b]and (;1]—9[‘ (a+as) +b :'

The power meter measures the quantity,

(%) - (é.+ai) +b\Z i1=0,1

and since the circuit was previously adjusted off resonance so thata = b,
the meter indication with respect to the power level at resonance is
simply

lz
a,

o]’

Thus the meter will indicate a ""half-power' point when ag = \/Za‘ .

If a, and a, are normalized with respect to a, the incident wave,
the quantities -1-a, /a and -1l-ag/a are equivalent to the reflection
coefficient of the iris at half power and resonance respectively. That
is,

a 1-F
(A-1) fres=-1-—9- = E
a l+g
|§ 2 dw
rl -— _a_l'. = I-E—j __T_.J-wres
(A—Z) 2 - T a . Zdw
1+E+j] —
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whereg, L and T are normalized elements of a shunt equivalent circuit
for the cavity, see Fig. 20, and dw = w-wo. Eqs. (A-1) and (A-2)
reduce to

-2
A-3) 20 -
( ) a g+1
and
(A'4) -il =_- ot
a g+1+j[T 2dw
T, wres
Thus, —
_9_ 2dw .
(A-5) laol = ‘§+j\ 1 wres +1!
a, (8+1)°

or E 2dw 2
2 = ( ’
(A-6) |2e| = 14+ Lwres

a, (E'Fl)a

Now since Qg, =

r*lloll
[
3
[(]
=]

1+E
Eq. (A-6) yields

(A-7)  Qr =<‘°reS)
A w

Here A w is twice dw at the half power points, i.e. Aw is the half
power bandwidth observed on the power meter in line 4, Thus the

half power bandwidth measured on a power meter at port 4 determines
the loaded Q of the circuit.

To determine the unloaded Q, Qu, which is the quantity required
in the perturbation theory, the relation

(A-8) +

1.1 41

Qr, Qu Qg

may be used. However, the required quantity is actually the difference
between the reciprocals of the unloaded Q's of the perturbed and un-
perturbed cavity, see Eq. (66),
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a-9y (L 1 (L = 1 \a 4" Lt
Q1, QE QLo QEo abc
perturbed unperturbed

Since QE, x Qg this equation reduces to

(a-10) L oL o detitw

Q1, QLo abc

Thus ¢' may be determined simply from the difference in the loaded Q's.

In practice it is desirable to have QE >> Q, in order to avoid
the inaccuracies inherent in subtracting two nearly equal numbers in Eq.
(A-9). The cavity used was designed to be considerably undercoupled.
The measured normalized input admittance at resonance was found to
be about 12, This is also the ratio of the external Q to the unloaded Q
so that Qp, which had a computed value of about 10,000, had only a
small influence on the value of Qj .
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